“Babies capture the hearts and minds of those that surround them during their stages of development, but grow so quickly that their family may not have time to fully enjoy these times.”
A possible solution to this conundrum is presented in an invention which has just received a US patent (Aug 2014). The patent describes a robotic ‘Infant Mannequin’ which comprises :
“ […] an infant head form with two eye members, a nose member, a mouth aperture having two lips, and a head form having a facial image of a specific human infant. The system comprises an infant body form, a skeletal structure, a muscular structure, a skin covering, and a hair receptacle system located on the head form. The system comprises an abdomen compression diaphragm located underneath the skin covering.”
The patent-document follows convention by listing the ‘claims’ of the invention – in other words the aspects which are new and which differentiate it from previous ‘prior art’. In this case there are just two claims, but they are quite comprehensive, and, unusually perhaps, are presented in the form of two (rather long) sentences, which for readers’ convenience, we reproduce below . . .
What is claimed is:
1. A novel infant mannequin system (100) for documenting features of a specific human infant comprising: (a) a humanoid infant head form (200) having a generally spherical, generally bilaterally symmetrical shape about a sagittal plane, wherein the head form (200) comprises two eye members (210) having a form and coloring disposed thereon that generally resemble the specific human infant, wherein the head form (200) comprises a nose member (220) having two apertures disposed therein having a form that generally resembles the specific human infant, wherein the head form (200) comprises a mouth aperture (230) having two lips (240) disposed on an edge thereon having a form that generally resembles the specific human infant, wherein the head form (200) comprises a form that generally resembles the specific human infant, wherein a facial image (250) of the specific human infant is disposed on the head form (200); (b) a humanoid infant body form (300) having a generally bilaterally symmetrical shape about a sagittal plane, wherein the body form (300) comprises a torso (310) having a first leg (320) and a first arm (330) disposed on a torso first side (340) and a second leg (350) and a second arm (360) disposed on a torso second side (370), wherein a first hand (335) is disposed on the first arm (330) and a second hand (365) is disposed on the second arm (360), wherein a first foot (325) is disposed on the first leg (320), wherein a second foot (355) is disposed on the second leg (350), wherein the head form (200) is disposed at a torso top (380), wherein the body form (300) comprises a form that generally resembles the specific human infant; (c) a humanoid skeletal structure (400) having a generally bilaterally symmetrical shape about a sagittal plane, wherein the skeletal structure (400) comprises a plurality of rigid members (410), wherein the rigid member (410) comprises a movable joint (440) disposed thereon, wherein the skeletal structure (400) further comprises a hollow skull member (450), and a hollow torso skeletal member (470), wherein the plurality of rigid members (410) are disposed together via the movable joints (440), wherein the plurality of rigid members (410), the torso skeletal member (470), and the skull member (450) are disposed together via movable joints (440) to comprise the skeletal structure (400) form that resembles the specific human infant; (d) a humanoid muscular structure (500) having a generally bilaterally symmetrical shape about a sagittal plane, wherein the muscular structure (500) comprises a plurality of elastic members (510), wherein the elastic member (510) comprises an elastic member first end (520) and an elastic member second end (530), wherein the elastic member first end (520) is disposed on a rigid member first connection point (420), wherein the elastic member second end (530) is disposed on a rigid member second connection point (430), wherein the plurality of elastic members (510) serve to provide a degree of poseable stiffness to the movable joints (440), wherein the muscular structure (500) comprises a form that resembles the specific human infant; (e) a humanoid skin covering (600) disposed over and fully enveloping the skeletal structure (400) and the muscular structure (500), wherein the skin covering (600) is constructed from a silicone rubber, wherein the skin covering (600) comprises a color, a texture, an elasticity, a thickness, and a form that resembles the specific human infant; (f) a hair receptacle system (700), wherein the hair receptacle system (700) is disposed on the skin covering (600), wherein the hair receptacle system (700) is disposed on the head form (200), wherein the hair receptacle system (700) is for receiving, holding, positioning and displaying a lock of human infant hair, wherein the hair receptacle system (700) comprises the human hair of the specific infant, wherein the hair receptacle system (700) comprises a color, a texture and a form that resembles the specific human infant; (g) an abdomen compression diaphragm (800) disposed on the skeletal structure (400), wherein the abdomen compression diaphragm (800) is disposed underneath the skin covering (600), wherein the abdomen compression diaphragm (800) spans an abdominal cavity front opening (460), wherein the abdomen compression diaphragm (800) is elastically compressible, wherein the abdomen compression diaphragm (800) comprises a form, and a function that resembles the specific human infant; (h) a function simulation system (900) comprising a microprocessor (910), a power source (912), a data port (914) and an activation switch (916) disposed in the torso (310), wherein the microprocessor (910) is operatively connected to the data port (914), and the activation switch (916), wherein the activation switch (916) is operatively connected to the power source (912), wherein the function simulation system (900) further comprises: (i) a heartbeat output simulator (920) disposed in the torso (310), wherein the heartbeat output simulator (920) is disposed underneath the skin covering (600), wherein the heartbeat output simulator (920) is operatively connected to the microprocessor (910), wherein the heartbeat output simulator (920) produces a function of a rhythmic beat in a torso chest area (390) that resembles the specific human infant, (ii) a thermal circulation system (930), wherein a temperature controlled circulation fluid (932) is disposed in a capillary network (934), wherein the capillary network (934) is disposed beneath the skin covering (600), wherein the circulation fluid (932) is propelled through the capillary network (934) via a circulation fluid pump (940) disposed in the torso, wherein the circulation fluid pump (940) is operatively connected to the microprocessor (910), wherein the thermal circulation system (930) further comprises a heater (936) disposed in the torso (310), wherein the heater (936) heats the circulation fluid to a specified value, wherein the heater (936) is operatively connected to the microprocessor (910), wherein the thermal circulation system (930) further comprises a temperature sensor (938) disposed in the torso (310), wherein the temperature sensor (930) monitors the temperature of the circulation fluid (932), wherein the temperature sensor (930) is operatively connected to the microprocessor (910), wherein the thermal circulation system (930) produces a function of a regulated temperature of the skin covering (600) that resembles the specific human infant, (iii) an abdominal expansion system (950) disposed in the torso (310), wherein the abdominal expansion system (950) further comprises an abdominal bladder assembly (952) disposed against and operatively interfacing with the abdomen compression diaphragm (800), wherein the abdominal expansion system (950) further comprises connective tubing (954) fluidly connecting the mouth aperture (230) and the abdominal bladder assembly (952), wherein the abdominal expansion system (950) further comprises an abdominal electric motor (956) disposed in the torso (310), wherein the abdominal electric motor (956) is operatively connected to the microprocessor (910), wherein upon activation of the abdominal electric motor (956) the abdominal bladder assembly (952) rhythmically expands and contracts the abdomen compression diaphragm (800), wherein the abdominal bladder assembly (952) further draws in air through the mouth aperture (230), then alternately expels air through the mouth aperture (230) via the connective tubing (954), wherein the abdominal expansion system (950) produces a function of a moving abdomen and a breathing simulation that resembles the specific human infant, (iv) a sound generator (960) disposed in the torso (310), wherein the sound generator (960) is operatively connected to the microprocessor (910) and comprises a speaker (965), wherein upon activation, the sound generator (960) produces a function of reproducing recorded sounds emulating baby noises that resemble the specific human infant, (i) a body weight distribution member (970), wherein the body weight distribution member (970) is disposed in the skeletal structure (400), wherein the body weight distribution member (970) produces a function of simulating the weight of an infant in an area disposed therein, wherein the body weight distribution member (970) comprises a weight that resembles the specific human infant; wherein the thermal circulation system (930) comprises electrical resistance wire disposed beneath the skin covering (600) operatively connected to the microprocessor (910).
2. A novel infant mannequin system (100) for documenting features of a specific human infant comprising: (a) a humanoid infant head form (200) having a generally spherical, generally bilaterally symmetrical shape about a sagittal plane, wherein the head form (200) comprises two eye members (210) having a form and coloring disposed thereon that generally resemble the specific human infant, wherein the head form (200) comprises a nose member (220) having two apertures disposed therein having a form that generally resembles the specific human infant, wherein the head form (200) comprises a mouth aperture (230) having two lips (240) disposed on an edge thereon having a form that generally resembles the specific human infant, wherein the head form (200) comprises a form that generally resembles the specific human infant, wherein a facial image (250) of the specific human infant is disposed on the head form (200); (b) a humanoid infant body form (300) having a generally bilaterally symmetrical shape about a sagittal plane, wherein the body form (300) comprises a torso (310) having a first leg (320) and a first arm (330) disposed on a torso first side (340) and a second leg (350) and a second arm (360) disposed on a torso second side (370), wherein a first hand (335) is disposed on the first arm (330) and a second hand (365) is disposed on the second arm (360), wherein a first foot (325) is disposed on the first leg (320), wherein a second foot (355) is disposed on the second leg (350), wherein the head form (200) is disposed at a torso top (380), wherein the body form (300) comprises a form that generally resembles the specific human infant; (c) a humanoid skeletal structure (400) having a generally bilaterally symmetrical shape about a sagittal plane, wherein the skeletal structure (400) comprises a plurality of rigid members (410), wherein the rigid member (410) comprises a movable joint (440) disposed thereon, wherein the skeletal structure (400) further comprises a hollow skull member (450), and a hollow torso skeletal member (470), wherein the plurality of rigid members (410) are disposed together via the movable joints (440), wherein the plurality of rigid members (410), the torso skeletal member (470), and the skull member (450) are disposed together via movable joints (440) to comprise the skeletal structure (400) form that resembles the specific human infant; (d) a humanoid muscular structure (500) having a generally bilaterally symmetrical shape about a sagittal plane, wherein the muscular structure (500) comprises a plurality of elastic members (510), wherein the elastic member (510) comprises an elastic member first end (520) and an elastic member second end (530), wherein the elastic member first end (520) is disposed on a rigid member first connection point (420), wherein the elastic member second end (530) is disposed on a rigid member second connection point (430), wherein the plurality of elastic members (510) serve to provide a degree of poseable stiffness to the movable joints (440), wherein the muscular structure (500) comprises a form that resembles the specific human infant; (e) a humanoid skin covering (600) disposed over and fully enveloping the skeletal structure (400) and the muscular structure (500), wherein the skin covering (600) is constructed from a silicone rubber, wherein the skin covering (600) comprises a color, a texture, an elasticity, a thickness, and a form that resembles the specific human infant; (f) a hair receptacle system (700), wherein the hair receptacle system (700) is disposed on the skin covering (600), wherein the hair receptacle system (700) is disposed on the head form (200), wherein the hair receptacle system (700) is for receiving, holding, positioning and displaying a lock of human infant hair, wherein the hair receptacle system (700) comprises the human hair of the specific infant, wherein the hair receptacle system (700) comprises a color, a texture and a form that resembles the specific human infant; (g) an abdomen compression diaphragm (800) disposed on the skeletal structure (400), wherein the abdomen compression diaphragm (800) is disposed underneath the skin covering (600), wherein the abdomen compression diaphragm (800) spans an abdominal cavity front opening (460), wherein the abdomen compression diaphragm (800) is elastically compressible, wherein the abdomen compression diaphragm (800) comprises a form, and a function that resembles the specific human infant; (h) a function simulation system (900) comprising a microprocessor (910), a power source (912), a data port (914) and an activation switch (916) disposed in the torso (310), wherein the microprocessor (910) is operatively connected to the data port (914), and the activation switch (916), wherein the activation switch (916) is operatively connected to the power source (912), wherein the function simulation system (900) further comprises: (i) a heartbeat output simulator (920) disposed in the torso (310), wherein the heartbeat output simulator (920) is disposed underneath the skin covering (600), wherein the heartbeat output simulator (920) is operatively connected to the microprocessor (910), wherein the heartbeat output simulator (920) produces a function of a rhythmic beat in a torso chest area (390) that resembles the specific human infant, (ii) a thermal circulation system (930), wherein a temperature controlled circulation fluid (932) is disposed in a capillary network (934), wherein the capillary network (934) is disposed beneath the skin covering (600), wherein the circulation fluid (932) is propelled through the capillary network (934) via a circulation fluid pump (940) disposed in the torso, wherein the circulation fluid pump (940) is operatively connected to the microprocessor (910), wherein the thermal circulation system (930) further comprises a heater (936) disposed in the torso (310), wherein the heater (936) heats the circulation fluid to a specified value, wherein the heater (936) is operatively connected to the microprocessor (910), wherein the thermal circulation system (930) further comprises a temperature sensor (938) disposed in the torso (310), wherein the temperature sensor (930) monitors the temperature of the circulation fluid (932), wherein the temperature sensor (930) is operatively connected to the microprocessor (910), wherein the thermal circulation system (930) produces a function of a regulated temperature of the skin covering (600) that resembles the specific human infant, (iii) an abdominal expansion system (950) disposed in the torso (310), wherein the abdominal expansion system (950) further comprises an abdominal bladder assembly (952) disposed against and operatively interfacing with the abdomen compression diaphragm (800), wherein the abdominal expansion system (950) further comprises connective tubing (954) fluidly connecting the mouth aperture (230) and the abdominal bladder assembly (952), wherein the abdominal expansion system (950) further comprises an abdominal electric motor (956) disposed in the torso (310), wherein the abdominal electric motor (956) is operatively connected to the microprocessor (910), wherein upon activation of the abdominal electric motor (956) the abdominal bladder assembly (952) rhythmically expands and contracts the abdomen compression diaphragm (800), wherein the abdominal bladder assembly (952) further draws in air through the mouth aperture (230), then alternately expels air through the mouth aperture (230) via the connective tubing (954), wherein the abdominal expansion system (950) produces a function of a moving abdomen and a breathing simulation that resembles the specific human infant, (iv) a sound generator (960) disposed in the torso (310), wherein the sound generator (960) is operatively connected to the microprocessor (910) and comprises a speaker (965), wherein upon activation, the sound generator (960) produces a function of reproducing recorded sounds emulating baby noises that resemble the specific human infant, (i) a body weight distribution member (970), wherein the body weight distribution member (970) is disposed in the skeletal structure (400), wherein the body weight distribution member (970) produces a function of simulating the weight of an infant in an area disposed therein, wherein the body weight distribution member (970) comprises a weight that resembles the specific human infant; wherein the body weight distribution member (970) is fluid filled.